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Experiments of Andereck et al .  (1986) with corotating cylinders, show that Taylor- 
vortex flow (TVF) can bifurcate into one of the following cellular flows: wavy vortices 
(WV), twisted vortices (TW), wavy inflow boundaries (WIB), wavy outflow 
boundaries (WOB). We describe here the structure of these different flows, showing 
how they result from simple symmetry breaking. Moreover we consider the 
codimension-two situation where WIB and WOB interact, since this is an observed 
physical situation. 

The method used in this paper is based on symmetry arguments. It differs notably 
from the Liapunov-Schmidt reduction used in particular by Golubitsky & Stewart 
(1986) on the same problem with counter-rotating cylinders. Here we take into 
account all the dynamics, instead of restricting the study to oscillating solutions. I n  
addition to the standard oscillatory modes, we have a translational mode due to the 
indeterminacy of TVF under the shifts along the axis. We derive an amplitude- 
expansion procedure which allows the translational mode to depend on time. Our 
amplitude equations have nevertheless a simple structure because the oscillatory 
modes have a precise symmetry. They break, in general, the rotational invariance 
and they are either symmetric or antisymmetric with respect to the plane z = 0. 
Moreover, the most typical cases are when either of these modes has the same axial 
period as TVF or when their axial period is double this. This leads to four different 
cases which are shown to give WV, TW, WIB or WOB, all these flows being 'rotating 
waves', i.e. they are steady in a suitable rotating frame. 

Finally we consider the interaction between WIB and WOB that occurs when, a t  
the onset of instability, the two critical modes arise simultaneously. I n  this case we 
show in particular that  there may exist a stable quasi-periodic flow bifurcating from 
WIB or WOB. The two main frequencies are those of underlying WIB and WOB, 
while there may exist a third frequency corresponding to  a slow superposed travelling 
wave in the axial direction. 

The method was used in the counter-rotating case for interacting non-axisymmetric 
modes (see Chossat et al. 1986). One of the original contributions here is not only to 
clarify the origin of all observed bifurcations from TVF, but also to  handle the 
translational mode which may not stay small. This technique combined with 
centre-manifold and equivariance techniques may be helpful for many problems 
starting with orbits of solutions, such as the TVF considered here. 

1. Introduction 
Recent experiments by Andereck, Liu & Swinney (1986) on the Taylor-Couette 

problem for corotat,ing cylinders have provided many details about when the 
Taylor-vortex flow (TVF) loses its stability. They were able to  obtain wavy vorbices, 
vortices with flat boundaries and internal waves (twists), and vortices with wavy 



274 G. Iooss 

FIQURE 1. ( a )  WIB, (b )  WOB from Andereck et al. (1986): 0, outflow boundary; I, inflow boundary. 
boundary. Note that the axial period is twice the period of the TVF. 

outflow boundaries (WOB) and wavy inflow boundaries (WIB). We are interested 
here in explaining the mathematical nature of the flows referred to as WOB and 
WIB. For a certain range of the angular velocity SZ,  of the outer cylinder, one of these 
flows occurs when TVF disappears, when the angular velocity of the inner cylinder 
Q1 increases. For a different range of S Z ,  the other flow occurs. The existence of these 
flows also depends on the axial wavelength of the original TVF (Andereck et al. 1986). 
These flows are both rotating waves, i.e. in a suitable rotating frame they are steady. 
Moreover, for the WOB (WIB) the flat boundaries corresponding to an outward flow 
(inward flow) for TVF become wavy (see figures 1 and 2). For either flow, the axial 
wavelength of the pattern is twice that of the TVF. Let us note that recent numerical 
computations by Nagata (1986), in the small-gap case of almost corotating cylinders, 
show two types of subharmonic modes which in fact are WIB and WOB. Moreover 
Jones (1985) studied numerically the instability of TVF for 52, = 0, and found a 
‘subharmonic jet mode’ which in fact is WOB. 

The method used in this paper is mainly based on symmetry arguments. Even 
though all symmetries of the Taylor-Couette problem were known at the time of 
G. I. Taylor, it  is only in the last eight years that these symmetries could be used 
in a systematic way, since each bifurcation corresponds to a symmetry breaking of 
the observed solution. Roughly speaking, the linearized stability analysis allows us 
to ‘guess’ the form of the bifurcating flow, and the nonlinear analysis (expansion 
technique) gives the amplitude and higher-order terms. In fact, when there are many 
symmetries, as here, the linearized stability analysis is not sufficient to give a 
qualitative idea of the bifurcated solution: there is too much choice! It is then 
necessary to make the nonlinear analysis more general, in order to avoid losing 
anything and to be able to decide what flow will finally be seen. We derive an 
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Couette flow 

FIGURE 2. Experimental results for corotating cylinders; partial picture (see Andereck et al. 
1986). 

amplitude-expansion procedure of the same type as the classical ones (see Stuart 
1971), which is fully justified by recent progress in the theory of dynamical systems 
and which is adapted here to the case of a one-parameter family of basic steady flows 
(TVF) leading to a ‘translational mode ’. This amplitude-expansion technique, which 
uses symmetry arguments, differs notably from the Liapunov-Schmidt reduction, 
used in particular by Golubitsky & Stewart (1986) on a similar problem. Here the 
great advantage is to be able to study the transients and to obtain unexpected 
solutions. 

We show below how nature chooses between wavy vortices (WV), twisted vortices 
(TW), WIB and WOB. In  the experiments of Andereck et al. (1986) there is a case 
where WIB and WOB interact. We study this codimension-two situation, and we 
show that each WIB and WOB bifurcates into a quasi-periodic flow which has 
basically the two main frequencies of WIB and WOB, and possibly a superposed low 
frequency corresponding to a slow axial travelling wave. This travelling wave has 
nothing to  do with a global mean velocity upwards or downwards for particles, so 
we infer that this type of flow can be expected in finite cylinders provided that end 
effects are not too strong (as we change the boundary conditions in our analysis.) 
These quasi-periodic flows with three frequencies (one is very small) seem close to 
the so-called ‘wavelets’ of Andereck et al. (1986). 

Let us finally note that there are many other possibilities for the bifurcation of 
TVF. They would correspond to flows with a multiple axial wavelength greater than 
47r/a. Preliminary results are contained in Chossat & Iooss (1985). Such flows seem 
not to  have yet been observed. 

2. Notation and basic properties 
Let us first specify the physical conditions that are taken into account for the 

mathematical formulation of the problem. We assume the fluid filling the domain 
between the two concentric cylinders to be viscous and incompressible, so that the 
equations driving the flow are the Navier-Stokes equations 

?+( V * V )  V + - V p  1 = vAV, 
at P 
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where p is the constant volumic mass, v is the kinematic viscosity, p is the pressure 
and V the velocity of fluid particles. System ( 1 )  holds for x belonging to a domain 
52 defined in cylindrical coordinates by R, < r < R,, Z E  R, 8~ R/27cZ. Components 
of V(x, t )  are written (vr, vg, v,) in cylindrical coordinates, so the boundary conditions 
are (neglecting top and bottom conditions for the moment) 

vr = v, = 0, vg = QjRi a t  r = R3, j = 1, 2. (2) 

Now we put the system into dimensionless variables by choosing the following scales 
for length, time, pressure and velocity: R,, pR?SZ:, R52, respectively, and the 
Reynolds number 9 = Rf Q J v .  It is classical that  the following velocity field, 
independent of ( t ,  8, z ) ,  is a solution of the non-dimensionalized equations 

V o =  ( O , v o , O ) ,  v o =  Ar 1+,  r E  1,- , ( 3 I 3 (3) 

with A and B depending on R,/R, and d,/Q,. This is Couette flow, which is observed 
in experiments when the Reynolds number is small enough. We now set 

v =  v o +  U,  p = po+q, 

so that the system satisfied by ( U ,  q )  is the following: 

1 u + ( U - V )  V o + ( V o * V )  U + ( U * V )  U+Vq = 9 ? A U ,  

V . U =  0, 

at 

(4) 

UI,=l, R2,R1 = 0, I 
where the parameters are 9, R,/R,, 52,/52,. 

The system (4) has the fundamental property of invariance under translations 
along the z-axis, reflections through the horizontal plane Oxy, and rotations about 
the z-axis. Let us elaborate this statement. I n  cylindrical coordinates we define three 
linear operators z,, S, R, which are representations of the translation z ~ z + a ,  the 
reflection z H - z and the rotation about the axis 8 H 0 + $ : 

[z, U ]  ( r .  8, Z )  = U(r,  8, z+a) ,  

[R, Ul ( r ,  8, z )  = U(r, S+$, z ) ,  

[XU] (r,  8, Z )  = (u,(r, 8, - z ) ,  ug(r ,  8, - z ) ,  -- ,(r,  8, - z ) ) ,  ] 

SU, = Uo (TVF is symmetric under the reflection ZH-z), 1 (6) 

(5 )  

and analogous relations for the scalar function q .  We note that the Couette flow is 
invariant under T,, S and R, and that the system (4) commutes with these three linear 
operators (we say that i t  is equivariant under the three representations (5 ) ) .  

Let us consider the cases when the TVF is a solution of (4). Here V,, the TVF, 
is such that the plane z = 0 is an outflow boundary, and a is the axial wavenumber. 
We have the following properties : 

R, U, = U, (TVF is axisymmetric), 

T ~ ~ , ~  U, = U, (axial periodicity). 

Moreover, it  is clear that  z, U, is a TVF shifted by a along the z-axis, so for a = 7c/a 
(half of the period) the plane z = 0 is an inflow boundary for this TVF (see figure 3). 
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FIGURE 3. Taylor vortex flow (TVF), section view. 

If we consider now the system satisfied by the perturbation of the basic flow U,, 
this system (putting V o +  U, instead of V o  into (4)) is equivariant under the linear 
operators R,, S and zzrr,a (no longer under z, for any a ) .  The linearized system will 
satisfy the same eyuivariance conditions. 

Now, for mathematical purposes we replace the experimental boundary conditions 
on the top and the bottom of cylinders by a periodicity condition, the period being 
h. I n  fact, it  is known physically that if we change the boundary conditions a t  the 
top and bottom of cylinders, we observe the same flow as before, provided that we 
are ‘not too close ’ to these ends. Moreover, for rigid boundaries there is a singularity 
of the velocity field which impedes the mathematics. Now i t  is clear that  we 
necessarily have an integer n such that 

h = n27c/a, (7)  

where n is the number of periods along the axis ( 2 n  cells). Let us note that by fixing 
h we suppress the possibility of interactions between a continuum of wavenumbers 
(the linearized system has a continuous spectrum). Moreover i t  still allows many types 
of possible symmetry breaking for large n. By choosing n = 1 we would not be able 
to obtain any WOB or WIB. 

The system (4) satisfied by the perturbation U of Couette flow may be written in 
a functional form as follows: 

where U(t)  is a divergence-free vector function which satisfies homogeneous boundary 
conditions on the cylinders. The importance of (8) is that i t  avoids including the 
pressure term Vq.  This is done by projecting the system (4) on to a divergence-free 
space of vector fields with zero normal component on the cylinders. This space is 
orthogonal to Vq with the L2 scalar product. This is a classical way of showing that 
Navier-Stokes equations give a well-posed evolution system in a suitable Hilbert 
space, with a unique solution for the initial-value problem (see for instance Iooss 
1984). We might consider ,u in a three-dimensional space, by performing for instance 
on parameters 8, Q2/Ql, R,/R,. For simplicity of notation we shall first consider a 
single parameter ,u (a function of the Reynolds number) and, for the codimension-two 
problem, another parameter 1’ (a function of Q2/Ql). 



278 G. Iooss 

3. Linear stability analysis of the TVF 
We have by construction, since U, is a TVF, 

B ( p ,  U,) = 0, (9) 

F ( p ,  za U,) = 0 for any a. (10) 

p p , o  = D U g h  UO). (11) 

and due to the equivariance of B 

The stability of a TVF is governed by the eigenvalues of the linear operator 

Due to  the equivariance of 9 we also have 

F ( p ,  z, U )  = z, S ( p ,  U )  for any U and a. (12) 

Differentiating (12) with respect to U,  and computing the result for U = U,, we 
obtain 

9 p . a  = za p , , o  T-aT (13) 

with 

As a consequence, the eigenvalues of ppxO are the same as those of Yp,a for any a. 
Let us assume that the TVF becomes unstable in an oscillatory way. This means 

that, a t  criticality, Fiw, are eigenvalues of Yo,, (if we define p = 0 as criticality). 
An eigenmode belonging to io, has the following form: 

5, = O(r, z )  e’mo, m integer, (14) 
where O(r, z )  = (d,(r, z ) ,  .2i,(r, z ) ,  .2iz(r, 2)). Since the linear operator Yo,, commutes 
with S, the vector function Cl = Sc, is also an eigenmode, and we have to study 
whether el and c, are colinear or not. I n  the first case, -+_ iw, will be simple eigenvalues, 
while in the second case they will be double. 

The crucial starting point of the nonlinear analysis rests on the behaviour of 4, and 
Cl under the group actions R,, S, zznla. 

The actions of R, and S are easily expressed, since we have from (14) 

R,Cj = eirn@Cj, j = 0, 1 ; SC, = C,, Sc, = 6,. (15) 

Now the action of the operator zznla on the eigenspace spanned by To and el has to 
satisfy the property that [z2nla]n is the identity operator. This is due to the axial 
h-periodicity, n being the number of sub-periods for U. As a consequence the 
eigenvalues of zzxla on the space (C,, C,> are itth roots of unity. 

Let us choose To such that 

T ~ ~ ~ ~ < ~  = e2iHz/nC,, I integer; (16) 

sz, = z-,S, (17)  

then 6, has again the form (14), and since we have the following identity: 

we can deduce easily that 

zZ,,, 5, = z ~ ~ , ~  SC, = 8z-2nla 4, = e-2ix1/n SC, = e-zlKl/n C l  . 
It follows that if e-zinln =+ eZin1ln (i.e. if l/n $. 0, i), the eigenspaces belonging to 

k iw, are in general two-dimensional. Now, for l /n = 0 or f the eigenvalues k iw, are 
in general simple. 
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Remark 1. For lln = lo/no, no 2 3, this leads to bifurcating solutions with an axial 
wavelength equal to no 2xla = no hln. Preliminary results are contained in Chossat 
& Iooss (1985). We do not consider such cases here since there is no experimental 
evidence of such symmetry breaking. 

From now on let C+ or 6- denote the eigenmode To depending on whether we have 

SC+ = C+ or SC- = -C-. (18) 

These are the only possibilities since the eigenspace is one-dimensional and S2 = Id. 
We have the following: 

around the shifted TVF zn/a U,, the 
eigenmode belonging to the eigenvalue io, is  z,/,<,. If we have lln = +, i .e. when we have 

LEMMA 1. For the linearized operator 

then Tala exchanges even and odd eigenmodes : 

S ( z n / a  C+) = - ( z n / a  C+), S(‘r/a C-) = (zn/a 6-1’ (20) 

Indeed znIaC0 is an eigenvector of Lf’02n/a, due to the identity (13) with a = x/a. 
Now, by using the identities (17) and (19) we can write 

S ( z r / a C k )  = z - r /aSCf  = zn/az-sn/aSC+ = - T n / a S C k ?  

and (18) leads to (20). 

translational invariance of the system (8). 
Finally, it  is important to note that 0 is also an eigenvalue, owing to the 

If we differentiate (10) with respect to a ,  at a = 0 we get 

uo).<, = 0, (21 ) 

where 

is the eigenvector belonging to the 0 eigenvalue. It follows simply that 

and 
s5, = - 5 0  

sz, u, = z-, u, 
result from the differentiation of the identity 

with respect to a at a = 0. 

1231 

4. Amplitude equations 
The usual way to define amplitudes is to set 

U -  U, = CY0 + AC, + A[, + V ,  (25) 
where we can look for V = @(p, A,  A, C) in a complementary space of the three- 
dimensional space spanned by {To, To,  [,}. The function @ defines a so-called centre 
manifold in the space of vector functions where U lies. This manifold is locally 
invariant under (8), i.e. if one starts on it,  one stays on it provided that one stays 
in some neighbourhood of U,. Moreover, it  is locally attracting, i.e. the long-time 
dynamics in a neighbourhood of U, is governed by the restriction of (8) on to this 

10 P L M  173 
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manifold. This new system is here three-dimensional and retains all the equivariances 
of the original system propagated via the definition ( 2 5 )  of the variables A ,  A, C. This 
three-dimensional differential equation is in fact a particular case of the amplitude 
equations, known for a long time by fluid dynamicists working on nonlinear stability 
problems (Stuart 1971). The mathematical theory of centre manifolds may be found, 
for instance, in Marsden & McCracken (1976) or Iooss (1979) amongst many others; 
and in the presence of symmetries in Ruelle (1973). 

I n  fact, we must realize that (25) is only valid in a neighbourhood of U = U,, which 
is unhelpful if the flow we are looking for moves in a neighbourhood of the full orbit 
7, U,, a E (0, 2n/a) which represents all possible TVFs. A better formulation, which 
allows this last possibility, is to set 

u= Tc(U,+AC0+XCo+ V ) ,  (26) 

where V lies in the same complementary space as for ( 2 5 ) .  
The difficulty here is that  the decomposition (26) is nonlinear, but it is valid for 

large C and allows us the possibility of using the translational equivariance of (8). 
This decomposition was not used in Chossat & Iooss (1985), so they could not obtain 
any bifurcated solutions other than rotating waves, with a constant C. Even though 
(26) is a nonlinear decomposition of U, we note that for C close to 0, we recover (25)  
up to second-order terms since we have, thanks to (21), 

T~ = Id+O(C), 

zc u, = u, + C<, + O(C2). 

Replacing (26) in (8). we find immediately by using (12) that  

= F ( p ,  u,+Ac,+x~,+ V ) .  
dt dt 

(27) 
We look now for a centre manifold such that 

V = @(p, A, X) 
since in (27) C has disappeared. 

The amplitude equations are now in the following form : 

- _  dC - h&, A ,  x) (real), 
dt 

I dd 
- = f (p ,  A, X) (complex), 
dt 

on which we have to  propagate the equivariances of (8). By using (15), (17) and (18), 
the actions of T,, S, R, lead immediately to the following properties, due to the 
definition (26) of A and C: 

T a :  A H A ,  C w C + a ,  

s: CH-C', A H A  i f < , = < + ,  A H - A  if[ ,=c-.  

R,: AwAeim,,  CHC, 1 (30) 

The equivariance of (29) under the representations of z,, S, R, defined by (30) gives 
us an a priori  form for f and h. We first note that h is identically 0. This is obvious 
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by combining the equivariances under S and R,,m. Finally i t  is clear that  (30) leads 
to amplitude equations of the form 

= 0, 
dC 
dt 
- 

(31 b)  
dA 
- = A g ( p ,  dt 

= (iw, + ap) A + bA(AI2 + h.0.t. 

where h.0.t. means higher-order terms. The factor iw,+a,u in the linear part is the 
principal part of the eigenvalue which perturbs the critical eigenvalue iw,. We may 
observe that we are reduced to a standard ‘Hopf bifurcation’, since (31 b )  is simply 
the Landau amplitude equation. 

5. Wavy vortices, twisted vortices, WIB and WOB 

other solution of (31) : 
The zero solution in (31), gives a TVF (see (26)). Now we clearly have the following 

A = poei(Rot+@o), C = const, (32) 

with a,p+bb,p,2+ ... = 0, i.e. 

po = ( -y)4+o(lpl% 
(33) 

52, = wo+ai,u+bip:+ ...,) 
where the subscripts r and i respectively mean real part and imaginary part. This 
family of solutions gives the following velocity field : 

U = U,( T ,  z + C) + Po{ o( r , z + C )  ei(me + t + @ o )  + c.c.) + h .o. t . (34) 

As a consequence of the analysis, this flow has the structure of rotating waves. I n  
fact, due to (30) and 

we have for the full velocity field (not only for the principal part) 

arg ( A ( t ) )  = 52, t + const, 

U(t) = Raot/m U l t = o .  (35) 

This means that the flow is steady if we rotate the reference frame with a rotation 
rate O,/m around the axis. 

If T ~ ~ ~ ~ { ~  = 6, we observe that T~~~~ reduces to the identity on A and C (see (26)). 
This means that in this case U in (34) is finally 2nla-periodic in z .  

If z2,/,T0 = -<,, then T ~ ~ / ~  acts as follows: , 4 w - A ,  C w C  (see (26)). This means 
that in this case, shifting z by 2n/a is the same as rotating 0 by n/m or translating 
time by nl52,. Moreover, since T~~~~ is the identity on ( A ,  C), the flow (34) will be 
4x/a-periodic in z .  Hence, in this case the axial period doubles. 

Now, if <, = <+ , the flow (34) for C = 0 is invariant under S : SU = U. This property 
is true on the principal part of (34), so it is also true for the complete expression of 
U, due to the propagation of this invariance on the V-part defined by (26). This 
implies that  u, = 0 on the plane z = 0, as for TVF. This property is also valid on each 
plane half of the axial period apart. For instance, if the axial period is 2n/a, we have 
% l Z - x / a  = Uzlz=-7t/a while the invariance under 8 implies u,I, =,la = - u,I, =-a,a, hence 

Finally, if To = T-, the plane z = 0 has no reason to be such that u, = 0, and this 
cell boundary is then wavy. Let us show that if T,,/,<, = -To then the boundary 

~ z l z - x , u  = 0. 

10-2 
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(6) WIB 

I -  I 

I I 

/ / / / / /  M \ \ A \ \ \  
I Waves I 

(c) Wavy vortices (d )  Twisted vortices 

FIGURE 4. (a, b) .  Wavy outflow or inflow boundaries (front view); (c, d)  wavy vortices and 
twisted vortices. All these flows are rotating waves (+). 

z = n/a stays flat (the flow has an axial period of 47c/a). In fact, if we started the 
analysis with U i  = Tnla Uo instead of U,, we could make the same idea work, using 
Tk = Tnla 6- (see (20)). We necessarily recover the solution (34) shifted by Tzala .  Hence 
we have, for C = 0 : 

Tnla U = Uh + po { 0' ei(me+oo W o )  + c.c.} + h.o.t., 

with a symmetric 0, and 

S ( T x / a  v) = '%/a  u. 
By the same argument as above, u, = 0 on the plane z = 0 for the flow Tnla U, i.e. 
on the plane z = n/a for the flow U. 

Let us now collect all these results for each possible case: 

(i) SY, = Yo, T z , l , ~ o  = Yo, twisted vortices. 

The flow has flat cells, n/a  apart. The axial periodicity is 2n/a (see figure 4). 

(ii) ST, = -C0, ~ z n l , [ o  = T o :  wavy vortices. 

Cells are wavy, axial periodicity is 2n/a (see figure 4). 

(iii) SY, = T o ,  T ~ ~ / ~ T ~  = - -To:  wavy inflow boundaries. 

We took the convention that U, is the TVF with z = 0 as an outflow boundary. As 
a consequence, all the outflow boundaries stay flat and all inflow boundaries become 
wavy. The axial period is 4z /a  (see figure 4). 

(iv) ST, = -4,. T,,,,~, = - T o ;  wavy outflow boundaries. 
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All the inflow boundaries stay flat while the outflow boundaries of the TVF become 
wavy. The axial period is 4x/a (see figure 4). Note that this flow was obtained 
numerically, using a direct computation, by Jones (1985) when the outer cylinder is 
at  rest ( '  subharmonic jet mode '). 

Finally, we might observe that these flows are stable if they bifurcate super- 
critically, i.e. when b, < 0 (since a, > 0), and unstable if b, > 0. 

Remark 2. Given a numerically computed TVF, we would have to compute the 
eigenmode So a t  criticality and then adapt the method developed in Demay & Iooss 
(1985) to compute coefficients a and b in (31). 

6. Interaction between WI3 and WOB 
In the experiments of Andereck et al. (1986) there is a critical value of R and Q,/Ql 

(for RJR, = 0.883) such that TVF becomes simultaneously unstable via two distinct 
ways leading to WIB and WOB. This means that at criticality we have two pairs 
of simple eigenvalues f iw+, f iw- with eigenmodes S+, [+, S-, [- such that 

By convention, we take m+ > 0, hence w +  may be < 0. We can perform the same 
type of analysis as above, by adding an adaitional parameter v (a function of Q2/Q,). 
We start with the following decomposition which defines the amplitudes A,  B, C: 

(37) 

with V = @(p, v, A, x, B, E) in a complementary space of the five-dimensional space 
spanned by {e0, S+, [+}. By the same argument as above, the amplitude equations 
may be written a s  foliows : 

u = z,( Uo + AS, + Ac-, + BS- + Ei- + V), 

We have to propagate the equivariances of (8) taking account of (36). Hence we have 
the following representations of z,, R,, S, T,~/~: 

7,: AHA, BHB, C-C+a, (39a) 

R,: A-Aeim+,, BHBeim-, ,  CHC, (39b) 

S :  A H A ,  BH-B, CH-C, (39c) 

zzn/a:  A H - A ,  BH-B, CHC. ( 3 9 4  

m+ = don+, m- = don-, (40 1 

Let us lnmoduce n+ and n- such that 

where do is the greatest common divisor of m+ and m-. It is then not difficult to 
prove the following properties (see Chossat, Demay & IOOSS (1986) for the method to 
prove such properties) : 
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LEMMA 2. The amplitude equations in (38)  satisfy 

where A = p+ ei++, B = p- ei*-, 0 = n+ @--n-  $+, and f o ,  go are n-periodic in 0 ;  
(ii) If n, or n- is even, then h = 0 ;  

(iii) If n+ and n- are odd then h. is changed into - h  when 0 i s  changed into O+n. 
If we expand f ,  9,  h in powers of A ,  3, B, B a n d  then use (39), it  is easy to  see that 

the principal parts are as follows: 

- = (io, + a 1 p + a a , v )  A+bAIA12+cAIB12fdPn--1B2n + + h.o.t., 
dA 
dt (42a)  

dC 
if n-n, even, 

_ -  
dt - I eAn-Bn+ +EAi”-Bn+ + h.0.t. if n- n., odd. (42c) 

The system (42a, 6 )  without the d-terms is a very well-known system whose dynamics 
has been studied in different work (see Guckenheimer & Holmes (1983) and references 
therein). 

Remark 3. It is clear from (42) that if n,  or n- is not 1, then the terms of order 
2(n++n-)-l occur in the h.0.t. 

We notice from (42) that we recover WIB and WOB. In  fact a WIB is obtained 
with 

B = 0, C = const, A = po ei(% Wb) 

This family of solutions of (42) corresponds to a WIB by using the same arguments 
as in 95. In  the same way we obtain a WOB with 

7. Secondary bifurcations of the WIB and WOB 
Before studying the stability of the WIB and WOB, let us first note that if n- is 

even, we could start the analysis with the shifted TVF Ui = T ~ , ~  U, and, thanks to 
( Z O ) ,  we could exchange indices + and -. Hence we only have two different cases 
(n, and n- have no common divisor) : 

(i) 

(ii) 

n+ or n- is even, 

n+ and n- are odd. 
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Examples. If Im+-m-l = 1 ,  then n, = m+, n- = m- and case (i) applies. If m+ = m- 

To study the stability of the WIB let us set 
case (ii) applies since n, = n- = 1 .  

Then, thanks to  the lemma of $6, the system in dp’ldt, d$/dt, dB’/dt, dC/dt does 
not contain t and #. In  particular this avoids the need to  compute Floyuet exponents. 
The principal part of the linearized equations becomes 

dP’ - = 2b, pi p’, 
dt 

I 0 if ‘n+ $. 1 or n- even, “=[ 
dt pt-(ep+eB’) if n, = 1 and n- odd, 

i f n + + l  

d ‘ p i n - B  if n+ = 1 .  

(46) 

lo dB’ -- dt - [i(o- - o+) + ~ ( a ;  -al) + ~ ( a ;  -a2)  + (b’- b )  pi ]  B’+ 

We then obtain 0 as a double eigenvalue (indeterminacies under time shifts and phase 
shift on A in (43)), and the classical real eigenvalue %,pi,  < 0 if the bifurcation of 
WIB is supercritical. There are two other complex eigenvalues A,  h such that 

(47) h = i ( w  -0,) +p(ai -a l )  + v(aL-az) + ( b ’ - b ) p i +  O(lpl+ 1 ~ 1 ) ~ .  
In the parameter plane (p, v )  we see that R e h  changes its sign when we cross the 
following line (using (43)) : 

0 = b;’ &(a;, b, - a,, b i )  + v(a;, b, - a2, b i ) ]  z Re h = 0. (48) 

Crossing this line corresponds to a Hopf bifurcation on the system in (p’ ,  B’) in a 
three-dimensional space. So there appears a new frequency QH close to Iw- -w+I  for 
A and B in (45). I n  fact we can say that the two basic frequencies for ( A ,  B )  are close 
to ]@+I and 10-1, since any integer combination of the basic frequencies is also a 
frequency of this bifurcating quasi-periodic flow. 

Ifwe now consider the amplitude G, we have two different cases. If n+ or n- is even, 
then Cis constant and the bifurcated flow has just two frequencies with the additional 
property that if we rotate the frame suitably around the z-axis, we only see a periodic 
flow. Now, if n, and n- are odd, then dC/dt is periodic with the frequency QH. I ts  
mean value K is not necessarily 0. I n  fact, i t  is not hard to check that 

K = o ( p t - E ) ,  (49) 

where E is the distance between R e h  and the line (48). For the velocity field this 
corresponds to a slow travelling wave in the axial direction (velocity = K ) ,  hence the 
bifurcating quasi-periodic flow has 3 frequencies in these cases (only one frequency 
in a suitable frame moving up with velocity K and turning to match one of the rotating 
waves). 
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Hopf-WOB 
Bifurcation \, (4) 

unstable 
Bifurcation 

stable 
\ WIB and WOB stable (6) 

I \ 

Hopf-WIB - 
Bifurcation 

unstable 
WIB 

Bifurcation 
stable WOB 

Qp;  (1) 

WIB 

TVF WOB 
-_--A- - - _ - - _ _  - - - _ _ I _  _ -  TVF (1) 

(2) (5) (6)  
(b) 

FIGURE 5. The first example of WIB-WOB interaction. (a) A parameter plane where we indicate the 
curves when bifurcations occur (&Pi, wavelets on a not necessarily unique branch). (b) A bifurcation 
diagram (parameter, angle around 0 in (p, v)-plane). Here the WIB and WOB are both stable for 
a range of parameters. 

In  the same way, we can study the stability of the WOB. The eigenvalues are 0, 
which is double, 2c:pf (< 0 if the bifurcation is supercritical), and two complex 
eigenvalues A,  such that 

(50) 

A bifurcation into a quasi-periodic flow occurs, in the same way as above when (p, v )  
crosses the line 

h = i(w+ - w- ) +p(a, - a;) + v(az -a;) + (c  - c’) p; + h.0.t. 

0 = c:-l &(a,, c: - air c,) + v(a,, c: -air c,)] x Re h = 0. (51) 

Remark 4 .  The principal part of the quasi-periodic flows we have just obtained is 
a pure superposition of two azimuthal wavenumbers m, and m-. Each wave rotates 
alone on the inflow or on the outflow boundaries with a frequency close to w +  or w - .  
It is reasonable to suggest that  these flows enter into the class of the so-called 
‘wavelets’ of Andereck et al. (1986). 

Remark 5. The computation of the amplitude equations (42) is based on the group 
action (39). If we consider the following other interactions, then the action of T~~~~ 
has to be changed: 

(i) twisted vortices and WOB: T~~~~ = S on the variables A ,  B, C; 
(ii) WIB and wavy vortices: T ~ ~ ~ ~ :  A H - A ,  B H B ,  CHC; 

(iii) twisted vortices and wavy vortices: z~~~~ = Id  on A ,  B,  C. 
I n  fact, these modifications of (39d) do not affect the analysis very much, which 

therefore remains mainly valid. It seems that, in the experiments of Andereck et al. 
(1986), interactions (i) and (ii) occur (see figure 2). 
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Bifurcation unstable WIB 

(4) Hopf-WOB 
/ 

/ 
Bifurcation 

, 
0 

/ 
0 

/ (6)  / 

Bifurcation stable WIB 

(1) 

FIGURE 6. The second example of WIB-WOB interaction. Here wavelets QPZ are stable when 
they occur. We cannot affirm that there is a unique branch QP", 

Now, depending on coefficients, which in principle could be computed once the 
TVF and the eigenmodes are known, there are a lot of possibilities. We give in figures 
5 and 6 two different cases. In  the first there are values of parameters for which both 
flows WIB and WOB are stable, i.e. we see one or the other flow depending on initial 
conditions. The second case gives wavelets (QP",), which could be seen since they are 
stable. In  both cases we choose a,,, a;, positive, and b,, c i  negative (supercritical 
bifurcations). 

The author is very grateful to the referees for suggesting improvements to this 
paper and especially to the one who found an error in the version presented a t  the 
Symposium. 
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